Brownian Subordinators and Fractional Cauchy Problems

نویسندگان

  • BORIS BAEUMER
  • MARK M. MEERSCHAERT
  • ERKAN NANE
چکیده

A Brownian time process is a Markov process subordinated to the absolute value of an independent one-dimensional Brownian motion. Its transition densities solve an initial value problem involving the square of the generator of the original Markov process. An apparently unrelated class of processes, emerging as the scaling limits of continuous time random walks, involves subordination to the inverse or hitting time process of a classical stable subordinator. The resulting densities solve fractional Cauchy problems, an extension that involves fractional derivatives in time. In this paper, we will show a close and unexpected connection between these two classes of processes and, consequently, an equivalence between these two families of partial differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Α-stable Subordinators and Cauchy Problems

We survey the results in Nane (E. Nane, Higher order PDE’s and iterated processes, Trans. American Math. Soc. (to appear)) and Baeumer, Meerschaert, and Nane (B. Baeumer, M.M. Meerschaert and E. Nane, Brownian subordinators and fractional Cauchy problems: Submitted (2007)) which deal with PDE connection of some iterated processes, and obtain a new probabilistic proof of the equivalence of the h...

متن کامل

ar X iv : 0 70 5 . 01 68 v 2 [ m at h . PR ] 9 M ay 2 00 7 BROWNIAN SUBORDINATORS AND FRACTIONAL CAUCHY PROBLEMS

A Brownian time process is a Markov process subordinated to the absolute value of an independent one-dimensional Brownian motion. Its transition densities solve an initial value problem involving the square of the generator of the original Markov process. An apparently unrelated class of processes, emerging as the scaling limits of continuous time random walks, involve subordination to the inve...

متن کامل

Fractional Cauchy problems on bounded domains

Fractional Cauchy problems replace the usual first-order time derivative by a fractional derivative. This paper develops classical solutions and stochastic analogues for fractional Cauchy problems in a bounded domain D ⊂ Rd with Dirichlet boundary conditions. Stochastic solutions are constructed via an inverse stable subordinator whose scaling index corresponds to the order of the fractional ti...

متن کامل

Fractional Cauchy problems on bounded domains: survey of recent results

In a fractional Cauchy problem, the usual first order time derivative is replaced by a fractional derivative. This problem was first considered by Nigmatullin (1986), and Zaslavsky (1994) in R for modeling some physical phenomena. The fractional derivative models time delays in a diffusion process. We will give a survey of the recent results on the fractional Cauchy problem and its generalizati...

متن کامل

ar X iv : 0 80 2 . 06 73 v 1 [ m at h . PR ] 5 F eb 2 00 8 FRACTIONAL CAUCHY PROBLEMS ON BOUNDED DOMAINS

Fractional Cauchy problems replace the usual first order time derivative by a fractional derivative. This paper develops classical solutions and stochas-tic analogues for fractional Cauchy problems in a bounded domain D ⊂ R d with Dirichlet boundary conditions. Stochastic solutions are constructed via an inverse stable subordinator whose scaling index corresponds to the order of the fractional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007